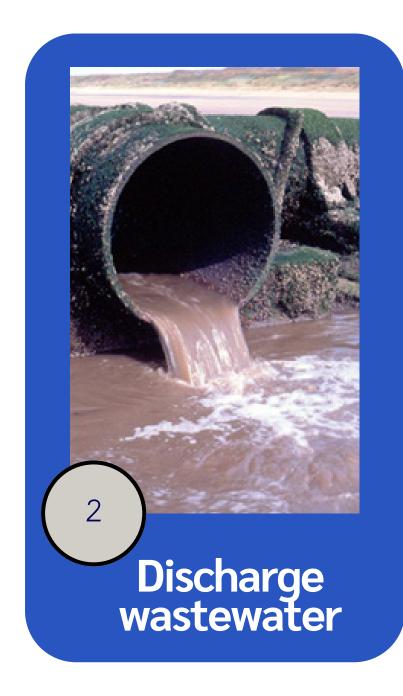
Study of chlorophyll extract from Yanang leaves for application in copper removal from water sources in industrial processes

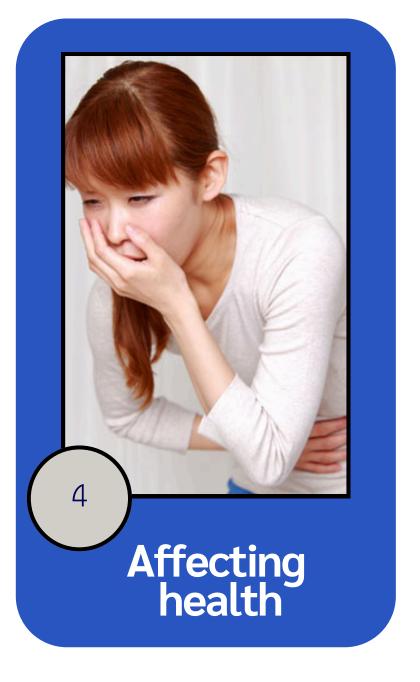
Presented By Miss Thapanee Ganoei Miss Panvad Thinnakorn Na Ayutthaya Miss Anchistha Chumphoo

Advisor

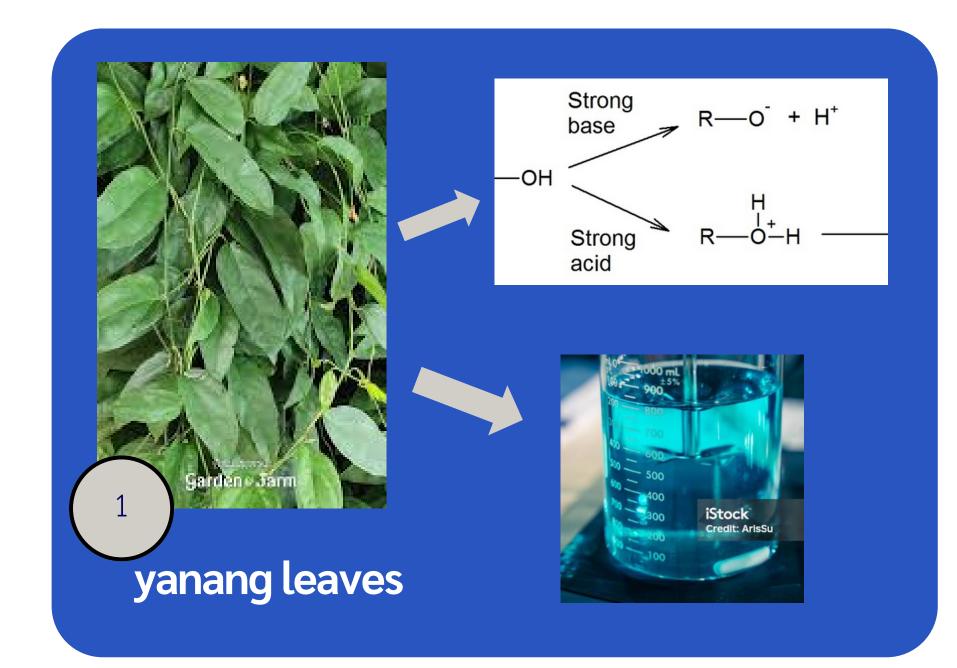
Miss Waewdaw Rupean Miss Kontree Sutthanee

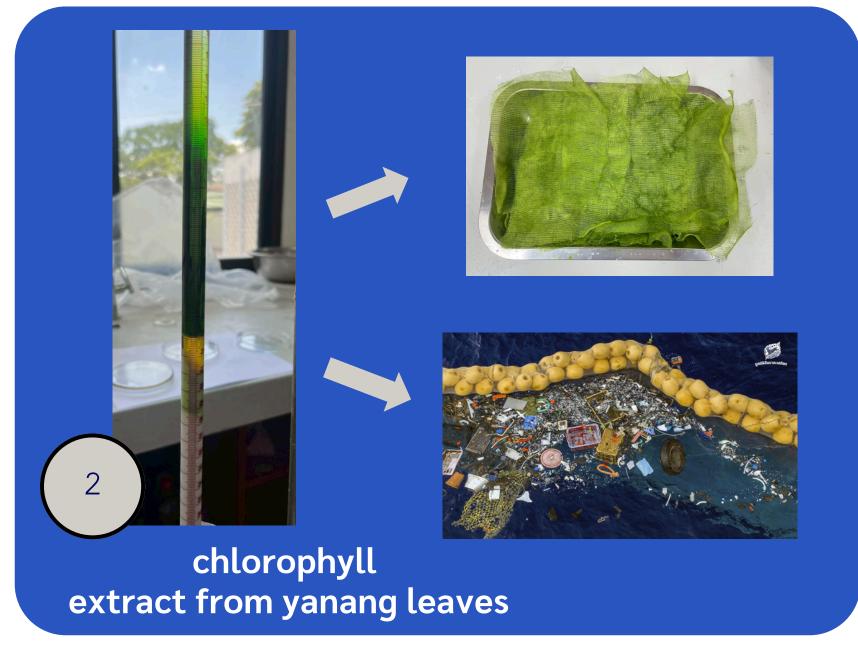


objectives


Variable

Scope of Research





objectives

Variable

Scope of Research

Objective

Variable

Scope of Research

To study the efficiency of copper ion adsorption by chlorophyll extract from Yanang leaves

To study the optimal ratio of chlorophyll for the most effective copper ion binding.

Objective

Variable

Scope of Research

Independent variable: Efficiency of copper ion adsorption

Dependent variable: Concentration of chlorophyll

Controlled variable: Volume of chlorophyll extract and copper solution.

Objective

Variable

Scope of Research

To study the properties and benefits of chlorophyll in Yanang leaves.

To test the copper-binding capacity of chlorophyll extracted from Yanang leaves.

To study and test the copper-binding ability of Yanang leaves at different ratios to find the most suitable formula.

Experiment 2

Experimental Method

Experimental Results

Discussion of Experimental Results

Conclusion of Experimental Results

Variable

Independent Variable Pure Chlorophyll Solution

<u>Dependent Variable</u> Absorbance Value (Copper Absorption by Chlorophyll)

Controlled Variable Copper Solution Concentration

Hypothesis

The results showed that when the absorbance value decreased, it indicated that chlorophyll was able to absorb copper. As a result, the copper concentration decreased, leading to a lower absorbance value.

Experiment 2

Experimental Method

Experimental Results


Discussion of Experimental Results

Conclusion of Experimental Results

EXTRACTION OF PURE CHLOROPHYLL USING COLUMN CHROMATOGRAPHY

- 1. Extract green pigment from Yanang leaves using acetone until 100 mL of green solution is obtained.
- 2. Mix the green solution with 30.00 g of magnesium sulfate and filter the mixture into a beaker.
- 3. Add 13.77 g of silica to the green extract and mix well.
- 4. Perform column chromatography by first adding a layer of silica into the column, followed by the green extract mixed with silica. Then, add hexane to allow the solution to flow through the column.

Experiment 2

Experimental Method

Experimental Results

Discussion of Experimental Results

Conclusion of Experimental Results

TESTING THE COPPER ABSORPTION OF CHLOROPHYLL

1. Evaporate the pure chlorophyll extract and dilute it with ethanol to obtain a 0.10 g solution.

2. Add copper(II) sulfate powder to prepare a 1 M copper solution and store it in a beaker.

3.Take 100.00 g of the copper solution from the beaker and mix it with the prepared chlorophyll extract.

Experiment 2

Experimental Method

Experimental Results

Discussion of Experimental Results

Conclusion of Experimental Results

TESTING THE COPPER ABSORPTION OF CHLOROPHYLL

4. Cover the mouth of the beaker with parafilm and allow the substances to react for 24 hours.

5. Measure the absorbance of the copper solution and the pure chlorophyll extract using a UV-Vis spectrophotometer.

Experiment 2

Experimental Method

Experimental Results

Discussion of Experimental Results

Conclusion of Experimental Results

Variable

Independent Variable Chlorophyll Concentration

Dependent Variable

Absorbance Value (Efficiency of Copper Absorption by Chlorophyll)

Controlled Variable

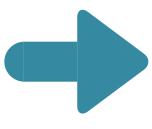
Copper Solution Concentration: 1 Molar

Hypothesis

The higher the concentration of chlorophyll, the greater its ability to absorb copper, resulting in a lower absorbance value.

Experiment 2

Experimental Method


Experimental Results

Discussion of Experimental Results Conclusion of Experimental Results

TESTING THE EFFICIENCY OF COPPER ABSORPTION BY CHLOROPHYLL

2. Measure the absorbance of each copper solution using a UV-Vis spectrophotometer.

1. Divide the copper solution into different concentrations: 0.1 M, 0.2 M, 0.3 M, and 0.4 M, and place each in a separate beaker.

Experiment 2

Experimental Method

Experimental Results

Discussion of Experimental Results

Conclusion of Experimental Results

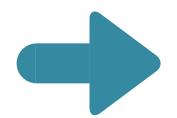
TESTING THE EFFICIENCY OF COPPER ABSORPTION BY CHLOROPHYLL

3. Weigh out Yanang leaves in amounts of 5.00 g, 10.00 g, 15.00 g, 20.00 g, and 25.00 g, and extract each with 200 mL of acetone. Filter the extracts and separate them into 5 beakers.

4. Mix each filtered extract with 200.00 g of magnesium sulfate, stir for approximately 2 minutes, and then filter again.

5. Mix the chlorophyll extract from each beaker with the copper solution at a ratio of 1:1000.

Experiment 2


Experimental Method

Experimental Results

Discussion of Experimental Results Conclusion of Experimental Results

TESTING THE EFFICIENCY OF COPPER ABSORPTION BY CHLOROPHYLL

7. Seal each beaker with parafilm and allow the reaction to proceed for 24 hours. 8. Measure the absorbance of the solutions using a UV-Vis spectrophotometer.

Experiment 2

Experimental Method

Experimental Results

Discussion of Experimental Results

Conclusion of Experimental Results

Round Average	copper solution	Copper solution with chlorophyll extract from yanan leaves
1	0.29	0.022
2	0.243	0.031
3	0.229	0.027
Average	0.254	0.027

The table shows the absorbance values of 1 Molar copper solution and copper solution with chlorophyll extract from yanan leaves by using Uv-Visible Spectrophotometer

Experiment 2

Experimental Method

Experimental Results

Discussion of Experimental Results

Conclusion of Experimental Results

From the experimental results, we have found the difference between the mean of 1 Molar copper solution and copper solution with chlorophyll extract from yanan leaves by using Uv-Visible Spectrophotometer, which was found to be decreased from the initial value. The reduced absorbance value was due to Chlorophyll has a ring structure that can bind to metals such as copper (Cu²⁺), where the copper replaces the magnesium(Mg²⁺) in the middle of the chlorophyll molecule, resulting in the adsorption of copper.

Experimental Method

Experimental Results

Discussion of Experimental Results

Conclusion of Experimental Results

$$CH_3$$
 NI
 CH_3
 NI
 CH_3
 CH_2CH_2
 CH_2CH_2
 $CH_2CH_2COCH_3$

The image shows Cu-chlorophyll, where copper replaces magnesium in the porphyrin ring. Four nitrogen atoms coordinate with Cu²⁺, forming a stable complex with various side chains.

Experiment 2

Experimental Method

Experimental Results

Discussion of Experimental Results

Conclusion of Experimental Results

From the science project on Study of chlorophyll extract from Yanang leaves for application in copper removal from water sources in industrial processes, Experiment 1, the experimental results showed that 0.10 g of chlorophyll extract from Yanang leaves per 100 g of copper solution could absorb copper up to 89.37%, as seen from the average absorbance value of the copper solution which was equal to 0.027 and the average value of the copper solution with chlorophyll extract from Yanang leaves which was equal to 0.254

Experiment 2

Experimental Method

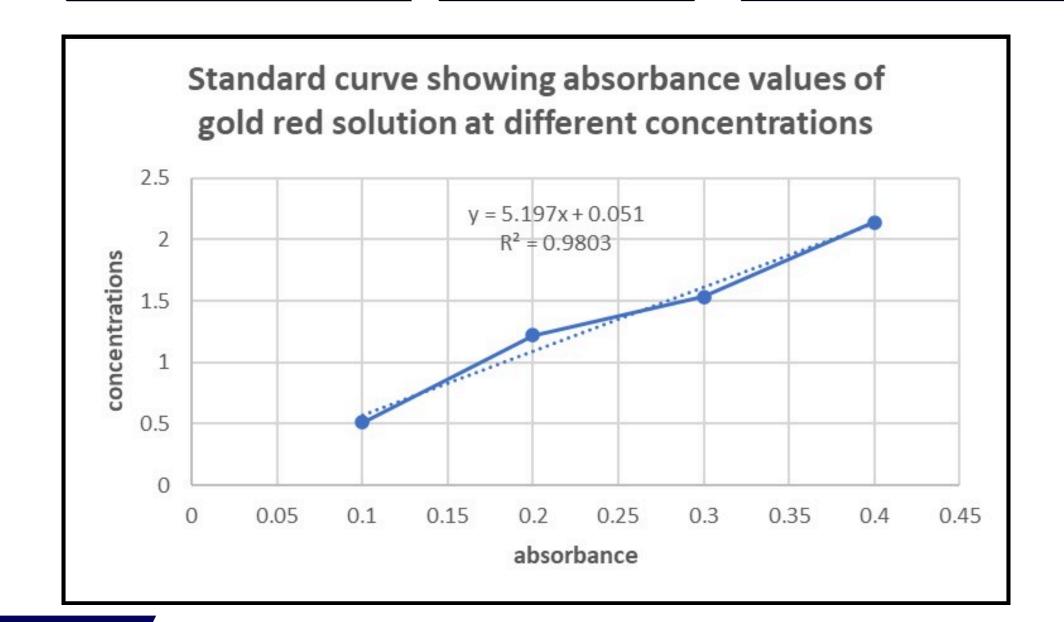
Experimental Results

Discussion of Experimental Results

Conclusion of Experimental Results

Concentrations	Absorbance
0.1	0.51
0.2	1.221
0.3	1.531
0.4	2.139

The table shows the absorbance values of different concentrations of the copper solution to be used to create a standard curve.


Experiment 2

Experimental Method

Experimental Results

Discussion of Experimental Results

Conclusion of Experimental Results

Standard curve showing absorbance values of gold red solution at different concentrations.

The R Square value is 0.9803 and the equation Y is equal to

$$y = 5.197x + 0.051$$

Experimental Method

Experimental Results

Discussion of Experimental Results

Conclusion of Experimental Results

Concentrations ratio	Absorbance	
5 / 200	2.085	
10 / 200	1.933	
15/ 200	1.634	
20 / 200	1.355	
25 / 200	1.529	

The table shows the different absorbance values of each formula concentration of

The chlorophyll extract from Yanang leaves with copper 0.4 mol / L

(The concentration ratio is the weight of the Yanang leaves to the acetone.)

Experiment 2

Experimental Method

Experimental Results

Discussion of Experimental Results

Conclusion of Experimental Results

Concentration ratio	Copper Remains	Copper adsorption efficiency of chlorophyll
5/200	0.3914	2.15 %
10/200	0.3621	9.475 %
15/200	0.3046	23.85 %
20/200	0.2509	37.275 %
25/200	0.2844	28.9 %

The copper residue is calculated from the equation y = 5.197x + 0.051

The copper adsorption efficiency of chlorophyll is calculated from the formula The initial amount of copper is subtracted from the remaining amount of copper and divided by the initial amount of copper. Multiply by 100.

Experiment 2

Experimental Method

Experimental Results

Discussion of Experimental Results

Conclusion of Experimental Results

From the experiment 2, we created a standard curve to find the equation and used that equation to find the residual copper value which led to the calculation of the percentage of copper adsorption efficiency of the cable in the Yanang leaves.

It was found that the concentration with the best absorption value is 20:200, which is because chlorophyll reaches the saturation point in absorbing copper, so the efficiency of copper absorption is maximum at the concentration of 20:200

Experiment 2

Experimental Method

Experimental Results

Discussion of Experimental Results

Conclusion of Experimental Results

From the science project on Study of chlorophyll extract from Yanang leaves for application in copper removal from water sources in industrial processes, Experiment 2, the experimental results showed that A ratio of 20 per 200 is the most effective ratio for copper absorption, as seen from the residual copper content is 0.2509 which is the least and the absorption amount is 37.275 % which is the highest.

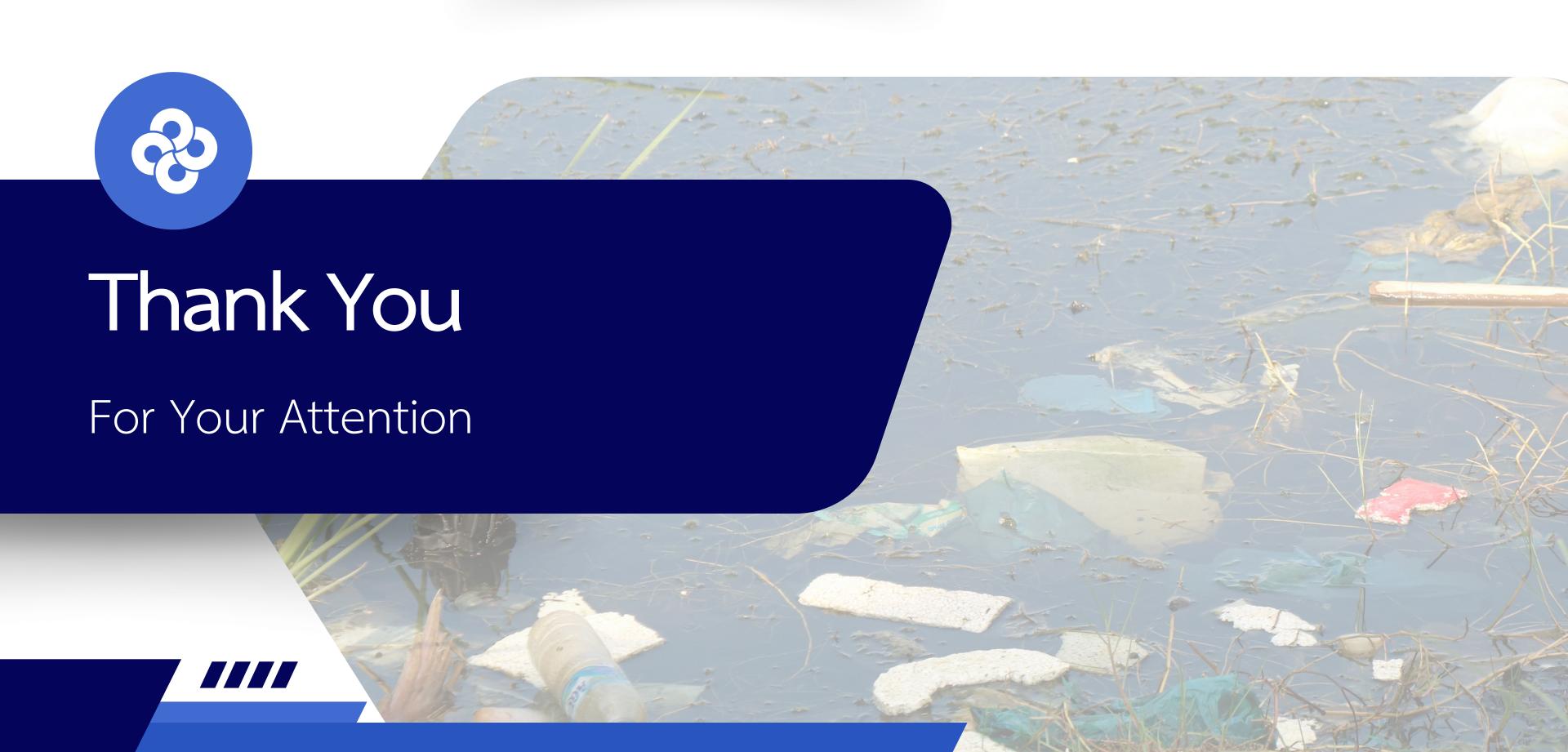
References

Pornpilin Luenglueatham and Pimchanok Buaphet. (2019). **Effects of copper and zinc contamination on photosynthesis and glutathione accumulation in hornwort algae (Ceratophyllum demersum).** Songkhla: Prince of Songkla University. Retrieved from http://wjs.wu.ac.th/index.ph/wuresearch

Phumphipob Kasemsap, Rawee Serthpakdee, Pen Saikhutthod, Jetsada Patraleapong, and Patchariya Boonkorkaeo. (n.d.). **Estimation of chlorophyll content from the greenness of certain plant leaves in Thailand.** Bangkok: Kasetsart University. Retrieved from https://kukr.lib.ku.ac.th/kukr es/kukr/search detail/result/5736

Tania Martin, Ana Novo Barros, Eduardo Rosa, and Luis Antunes. (2023). **Enhancing health benefits through chlorophylls and chlorophyll-rich agro-food: A comprehensive review.** Retrieved from https://www.mdp.com

Expected benefits



1 It can be further developed into an efficient filter sheet for absorbing copper metal in water.

Has the potential to reduce the concentration of copper in water sources.

A novel alternative material for making water filter sheets

